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SUMMARY

A short theoretical study of aircraft aerodynamic model equations
with unsteady effects is presented.  The aerodynamic forces and moments
are expressed in terms of indicial functions or internal state variables.  The
first representation leads to aircraft integro-differential equations of
motion; the second preserves the state-space form of the model equations.
The formulation of unsteady aerodynamics is applied in two examples.  The
first example deals with a one-degree-of-freedom harmonic motion about
one of the aircraft body axes.  In the second example, the equations for
longitudinal short-period motion are developed.  In these examples, only
linear aerodynamic terms are considered.  The indicial functions are
postulated as simple exponentials and the internal state variables are
governed by linear, time-invariant, first-order differential equations.  It is
shown that both approaches to the modeling of unsteady aerodynamics lead
to identical models.  In the case of aircraft longitudinal short-period
motion, potential identifiability problems, if an estimation of aerodynamic
parameters from flight data were to be attempted, are briefly mentioned .
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SYMBOLS

A j coefficient in Fourier series, j = 0, 1, 2, ...
a, a1, a2 parameters in indicial function

B parameter defined in table I
Bj coefficient in Fourier series, j = 0, 1, 2, ...

b1, b2 parameters in indicial function, 1/sec

C parameter defined in table I
Ca general aerodynamic force and moment coefficient

      
Caxx

(t) vector of indicial functions

      
Caxx

(¥) vector of aerodynamic derivatives

CL lift coefficient
Cl, Cm, Cn rolling-, pitching-, and yawing-moment coefficient

c parameter in indicial function

  c mean aerodynamic chord, m

      
Faxx

(t) vector of deficiency functions

I integral defined by eq. (46)
IY moment of inertia about lateral axis, kg-m2

K0, K1, K2 transfer function coefficients

k reduced frequency, 
    
k =

wl

V
ka parameter defined by eq. (20a)

  l characteristic length, m
m mass, kg

p, q, r roll rate, pitch rate, and yaw rate, rad/sec or deg/sec
S wing area, m2

s parameter in Laplace transform
T1, Ta time lag, sec

t time, sec
u vector of input variables
V airspeed, m/sec
x vector of state variables
xa state variable in eq. (43)
a angle of attack, rad or deg
b sideslip angle, rad
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d control surface deflection, rad or deg
xx vector of state and input variables
h internal state variable
l variable in characteristic polynomial
r air density, kg/m3

t time delay, sec

t1 nondimensional time constant, 
    

V
b1l

f, y roll and yaw angle, rad
w angular frequency, 1/sec

Subscript:
A amplitude
0 initial value

Matrix exponent:
T transpose matrix

Derivatives of aerodynamic coefficients Ca where the index a = L, l, m, or n

      

Cap
=

¶Ca

¶
pl

V

Caq
=

¶Ca

¶
ql

V

Caq̇
=

¶Ca

¶
q̇l2

V2

Car
=

¶Ca

¶
rl
V

      

Caa
=

¶Ca
¶a

Caȧ
=

¶Ca

¶
ȧl

V

Cab
=

¶Ca
¶b

Cad
=

¶Ca
¶d

Cah
=

¶Ca
¶h

Derivatives     Ma ,ȧ ,q,d  and     Za ,q,d  defined in table I.
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INTRODUCTION

One of the basic problems of flight dynamics is the formulation of
aerodynamic forces and moments acting on an aircraft in arbitrary motion.
For many years the aerodynamic functions were approximated by linear
expressions leading to a concept of stability and control derivatives.  The
addition of nonlinear terms, expressing, for example, changes in stability
derivatives with the angle of attack, extended the range of flight conditions
to high-angle-of-attack regions and/or high-amplitude maneuvers.  In both
approaches, using either linear or nonlinear aerodynamics, it is assumed
that the parameters appearing in polynomial or spline approximations are
time invariant.  However, this assumption was many times questioned
based on studies of unsteady aerodynamics which go back to the twenties.

A fundamental study of unsteady lift on an airfoil due to abrupt
changes in the angle of attack was made by Wagner in reference 1.  This
work was extended by Theodorsen to computing forces and moments on an
oscillating airfoil, whereas Küssner and Sears studied the lift on an airfoil
as it penetrates a sharp-edge or harmonically-varying gust, respectively
(see reference 2).  One of the first investigations of unsteady aerodynamic
effects on aircraft motion was made by R. T. Jones in reference 3.  He
studied the effect of the wing wake on the lift of the horizontal tail.  A more
general formulation of linear unsteady aerodynamics in the aircraft
longitudinal equations in terms of indicial functions was introduced by
Tobak in reference 4.  Later, in reference 5, Tobak and Schiff expressed the
aerodynamic forces and moments as functionals of the state variables.
This very general approach includes linear unsteady aerodynamics as a
special case.  A different approach to unsteady aerodynamics in aircraft
equations of motion was introduced by Goman and his colleagues in
reference 6.  They used additional state variables, which they called
internal state variables, in the functional relationships for the aerodynamic
forces and moments.

Despite the advancements of theoretical works, only a limited
number of attempts were made to estimate aerodynamic parameters from
experimental data and to demonstrate the importance of unsteady terms in
aircraft equations of motion.  In reference 7, a procedure for the estimation
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of aerodynamic forces and moments from flight data was proposed.  It
starts with the estimation of stability and control derivatives.  Then, the
resulting residuals of the response variables are used for the estimation of
unsteady terms.  Reference 8 addresses identifiability problems for
parameters in integro-differential equations.  Examples of estimated
indicial functions from simulated and flight data are given.  Fourier
functional analysis for unsteady aerodynamic modeling was applied to
wind tunnel data of a triangular wing and a fighter aircraft in references 9
and 10, respectively.  It was shown that this modeling method was
successful in computing the aerodynamic responses to large-amplitude
harmonic and ramp-type motions.  Finally, a concept of internal state
variables for expressing unsteady aerodynamics was applied to wind
tunnel oscillatory data and flight data in references 6 and 11.

The purpose of this report is to summarize the approaches of
references 5 and 6 to the formulation of aerodynamic model equations
suitable for parameter estimation from experimental data.  The report
starts with expressing aerodynamic forces and moments in terms of
indicial functions and internal state variables.  Then, two examples of
aerodynamic models for aircraft in small-amplitude motion are given.  A
discussion of these examples is completed by concluding remarks.

AERODYNAMIC CHARACTERISTICS IN TERMS OF INDICIAL
FUNCTIONS

Using the results of reference 5, aircraft aerodynamic characteristics
can be formulated as

      
Ca (t) = Ca (0) + Caxx

t - t ;xx (t )( )T d
dt

xx (t )dt
0

t

ò (1)

where

    Ca (t)  is a coefficient of aerodynamic force or moment,

xx  is a vector of aircraft state and input variables upon which the
coefficient Ca depends,

      
Caxx

(t) is a vector of indicial functions whose elements are the responses

in Ca to unit steps in xx , and

    Ca (0)  is the value of the coefficient at initial steady-state conditions.
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The indicial responses, 
    
Caxx

, are functions of elapsed time     (t - t )  and are

continuous single-valued functions of     xx (t).  The indicial functions

approach steady-state values with increasing values of the argument

    (t - t ) .  To indicate this property, each indicial function can be expressed as

    
Caxx , j

t - t ;xx (t )( ) = Caxx , j
¥;xx (t )( ) - Faxx , j

t - t ;xx (t )( ) (2)

where

    
Caxx , j

¥;xx (t )( )  is the rate of change of the coefficient Ca with   x j , in steady

flow, evaluated at the instantaneous value of   x j  with the remaining

variables xx  fixed at the instantaneous values   xx (t ) and
the function 

    
Faxx , j

 is called the deficiency function.  This function

approaches zero for     (t - t ) ® ¥ .
When equations (2) are substituted into equation (1), the terms involving the
steady-state parameters can be integrated and equation (1) becomes

      
Ca (t) = Ca ¥;xx (t)( ) - Faxx

t - t ;xx (t)( )T d
dt

xx (t )dt
0

t

ò (3)

where

    Ca ¥;xx (t)( )  is the total aerodynamic coefficient that would correspond to

steady flow with xx  fixed at the instantaneous values     xx (t) , and

    
Faxx

 is a vector of deficiency functions

If the indicial response 
    
Caxx

 is only a function of elapsed time, equations (1)

and (3) are simplified as

      

Ca (t) = Ca (0) + Caxx
(t - t )T d

dt
xx (t )dt

0

t

ò

= Ca (0) + Caxx
(¥)T xx (t ) - Faxx

(t - t )T d
dt

xx (t )dt
0

t

ò

(4)

When analytical forms of deficiency functions are specified, the
aerodynamic model based on equations (3) or (4) can be used in the aircraft
equations of motion for stability and control studies involving either linear
or nonlinear aerodynamics.  The resulting equations of motion will be
represented by a set of integro-differential equations.
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FORMULATION OF AERODYNAMIC FUNCTIONS USING INTERNAL
STATE VARIABLES

When the indicial functions are used in aircraft aerodynamic model
equations, it is not clear, either from theory or experiment, what analytical
form these functions should have.  After postulating models for indicial or
deficiency functions, questions about the physical meaning of terms in
these models may still be asked.  In order to avoid, at least partially, these
questions, a concept of internal state variables for modeling of unsteady
aerodynamics was proposed in reference 6.  This approach retains the
state-space formulation of aircraft dynamics, that is

      ̇x = f x(t),u(t)( );    x(0) = x0 (5)

by augmenting the aircraft states with the additional state variable     hh(t) .

Then, the aerodynamic coefficients are formulated as

    Ca (t) = Ca xx (t), hh(t)( ) (6)

where

    
ḣh = g hh(t),xx (t), ẋx (t)( ) (7)

and

      
xx (t) = x(t)T  u(t)T[ ]T

An example of equation (7) for a study of aircraft longitudinal
dynamics is given in reference 6.  Here, the internal state variable
represents the vortex burst point location along the chord of a triangular
wing.  This location is described as

    T1ḣ + h = h0 a - Taȧ( );     h £ 1 (8)

where

  h0  is the vortex burst point location under steady conditions,

  T1 is the time constant in the vortical flow development, and

  Ta  is the time lag in the same process caused by the angle-of-attack rate

of change.
The experimentally-obtained effect of the angle of attack and pitch rate on
vortex point location is taken from reference 12 and is plotted in figure 1.
The resulting curves were obtained by flow visualization on a delta wing
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undergoing static test and forced pitching oscillations at two reduced
frequencies.  The effect of pitch rate is seen by comparing the dynamic
vortex burst point location with the static point location.

EXAMPLES

The following two examples demonstrate the formulation of
aerodynamic equations and equations of motion with unsteady
aerodynamics.  In these examples, only small-amplitude motion will be
considered, thus leading to a system of linear equations.  In the first
example, aircraft one-degree-of-freedom (one d.o.f.) oscillatory motion about
each of the three body axes is considered.  The second example deals with
short-period longitudinal motion.  In both examples, the formulation of
unsteady aerodynamics using indicial functions and internal state
variables is considered.

Harmonic Oscillatory Motion:

In the development of aerodynamic models of an aircraft performing
a one d.o.f. oscillatory motion, an approach using indicial functions and
internal state variables will be considered.  For the oscillatory motion in
pitch, the functional relationships for the lift and pitching moments are

    

CL (t) = CL a (t), q(t)( )
Cm (t) = Cm a (t), q(t)( )

Applying equation (4), the lift coefficient can be expressed as

      

CL (t) = CL (0) + CLa (t - t )
d
dt

a (t )dt
0

t

ò +
l

V
CLq (t - t )

d
dt

q(t )dt
0

t

ò

= CL (0) + CLa (¥)a (t) - Fa (t - t )
d
dt

a (t )dt
0

t

ò

       +
l

V
CLq (¥)q(t) -

l

V
Fq (t - t )

d
dt

q(t )dt
0

t

ò

(9)
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Similar expressions can be written for     Cm (t) .  Neglecting the effect of     ̇q(t)

on the lift and taking into account only the increments with respect to
steady conditions, equation (9) is simplified as

      
CL (t) = CLa (¥)a (t) - Fa (t - t )

d
dt

a (t )dt
0

t

ò +
l

V
CLq (¥)q(t) (10)

For obtaining a model with a limited number of parameters, the indicial
function is assumed to be in the form of a simple exponential

    
CLa

(t) = a 1- e-b1t( ) + c (11)

Because

    
lim
t®¥

CLa
(t) = a + c = CLa

(¥),

equation (11) can also be written as

    CLa
(t) = CLa

(¥) - ae-b1t (11a)

After substituting (11a) into (10) and applying the Laplace transform to
equation (10), the expression for the lift coefficient is obtained as

      
CL (s) = CLa

-
as

s + b1
+

l

V
CLq

s
æ

è
ç

ö

ø
÷ a (s) (12)

where
    q(s)  was replaced by     sa (s) and, for simplicity,     CLa

º CLa
(¥) and

    
CLq

º CLq
(¥).

Using a complex expression for harmonic changes in     a (t), that is

    a (t) = a Aeiwt = a A cos(wt) + isin(wt)( ),

and replacing s by iw, the steady-state solution to equation (12) is

      

CL (t) = CLa - a
w2

b1
2 + w2

æ

è
ç

ö

ø
÷ a A sin(wt)

+
l

V
CLq - a

b1

b1
2 + w2

æ

è
ç

ö

ø
÷ a Aw cos(wt)

(13)



10

The introduction of reduced frequency

    
k =

wl

V
and nondimensional time constant

    
t1 =

V
b1l

yields

    
CL (t) = CLa

a A sin(wt) + CLq
a Akcos(wt) (14)

where

    

CLa
= CLa

(¥) - a
t1

2k2

1+ t1
2k2

CLq
= CLq

(¥) - a
t1

1+ t1
2k2

(15)

Similarly, the steady-state solution for the pitching-moment coefficient will
be

    
Cm (t) = Cma

a A sin(wt) + Cmq
a Akcos(wt) (16)

where

    

Cma
= Cma

(¥) - a
t1

2k2

1+ t1
2k2

Cmq
= Cmq

(¥) - a
t1

1+ t1
2k2

(17)

The parameters a and     t1
2  in equation (17) have, in general, different values

from those in equation (15).
When the internal state variable is used in formulating the unsteady

aerodynamic effect, the development of a model for the lift coefficient starts
with the equations

    CL (t) = CL a (t), q(t), h(t)( ) (18)

    T1ḣ + h = h0 a - Taȧ( ) (8)
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For small perturbations, both equations can be linearized around a steady-
state condition.  Then, the linearized equations (18) and (8) will have the
form

      
CL (t) = CLa

a (t) +
l

V
CLq

q(t) + CLh
h(t) (19)

    
T1ḣ + h = - T1 + Ta( ) dh0

da
ȧ (20)

Applying the Laplace transform, these equations will be changed as

      
CL (s) = CLa

a (s) +
l

V
CLq

q(s) + CLh
h(s) (21)

    
T1s + 1( )h(s) = - T1 + Ta( ) dh0

da
sa (s) (22)

When equation (22) is substituted into (21) and     q(s)  is replaced by     sa (s),

      
CL (s) = CLa

a (s) -
T1 + Ta
1+ T1s

dh0
da

CLh
sa (s) +

l

V
CLq

sa (s) (23)

Finally, introducing

    
a =

T1 + Ta
T1

dh0
da

CLh
     and     b1 = T1

-1

equation (23) will have the same form as equation (12).  The preceding
developments indicate that, for the indicial function given by equation (11a)
and the internal variable given by equation (22), the model

      
CL (t) = CLaa (t) - a e-b1(t-t) d

dt
a (t )dt

0

t

ò +
l

V
CLqq(t)

is equivalent to the model

      
CL (t) = CLa

a (t) +
l

V
CLq

q(t) + CLh
h(t)

    
T1ḣ + h = - T1 + Ta( ) dh0

da
ȧ
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Models for an aircraft performing one d.o.f. oscillatory motion in roll
and yaw can be developed in a similar way to that for the pitching
oscillations.  The rolling-moment coefficient is a function of the roll angle
and rolling velocity

    Cl (t) = Cl f (t), p(t)( ) (24)

where the roll angle is related to the sideslip angle by the equation

  b = f sin(a ) (25)

For the indicial function

    
Clb (t) = Clb (¥) - ae-b1t

the rolling-moment coefficient can be formulated as

      
Cl (t) = Clb (¥)b (t) - a e-b1(t-t) d

dt
b (t )dt

0

t

ò +
l

V
Clp

(¥) p(t) (26)

which leads to its steady response

    
Cl (t) = Clb f A sin(wt) + Clp

f Akcos(wt) (27)

where

    

Clb = Clb (¥) sin(a ) - a
t1

2k2

1+ t1
2k2 sin(a )

Clp
= Clp

(¥) - a
t1

1+ t1
2k2 sin(a )

(28)

In the yawing oscillatory motion, the yawing-moment coefficient is a
function of the yaw angle and its rate

    Cn (t) = Cn y (t), r(t)( ) (29)

and the yaw angle is related to the sideslip angle as

  b = -y cos(a ) (30)
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The yawing-moment equation takes the form

      
Cn (t) = Cnb

(¥)b (t) - a e-b1(t-t) d
dt

b (t )dt
0

t

ò +
l

V
Cnr

(¥)r(t) (31)

and its steady response the form

    
Cn (t) = Cnb

y A sin(wt) + Cnr
y Akcos(wt) (32)

where

    

Cnb
= Cnb

(¥) cos(a ) - a
t1

2k2

1+ t1
2k2 cos(a )

Cnr
= Cnr

(¥) + a
t1

1+ t1
2k2 cos(a )

(33)

For the interpretation of measured aerodynamic forces and moments
in the forced-oscillation experiment, the model for an increment in the lift
without any unsteady effect is usually postulated as (see reference 13)

      
CL (t) = CLa

a (t) +
l

V
CLȧ

ȧ (t) + CLq
q(t)( ) +

l

V
æ
è

ö
ø

2
CLq̇

q̇(t) (34)

The unsteady version of the preceding equation will have to include two
indicial functions,     CLa

(t) and 
    
CLq

(t) .  Then the lift coefficient will be

formulated as

      

CL (t) = CLa
a (t) - Fa (t - t )

d
dt

a (t )dt
0

t

ò

+
l

V
CLq

q(t) -
l

V
Fq (t - t )

d
dt

q(t )dt
0

t

ò

(35)

In both cases, the steady-state solution is given by equation (14) where, for
the neglected unsteady aerodynamics,

    

CLa
= CLa

- k2CLq̇

CLq
= CLq

+ CLȧ

(36)
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and, for the deficiency functions specified as

    Fa = a1e-b1t     and     Fq = a2e-b2t ,

    

CLa
= CLa

- a1
t1

2

1+ t1
2k2 - a2

t2

1+ t2
2k2

æ

è
ç

ö

ø
÷ k2

CLq
= CLq

- a1
t1

1+ t1
2k2 + a2

t2
2k2

1+ t2
2k2

æ

è
ç

ö

ø
÷

(37)

From a comparison of equations (36) and (37), it can be concluded that the
expressions in the parentheses are the unsteady counterparts to the
derivatives 

    
CLq̇

 and     CLȧ
.  For large values of t  and small values of   k, the

expressions in equations (37) can be simplified to those in equation (15).
Similar comparisons can be made for the remaining aerodynamic
coefficients.

Short-Period Longitudinal Motion:

The airplane short-period longitudinal motion can be described by the
equations

    

ȧ = q +
rVS
2m

CZ a (t), q(t),d (t)( )

q̇ =
rV2Sc

2IY
Cm a (t), q(t),d (t)( )

(38)

In the following analysis, it will be assumed that the linear approximation
to the aerodynamics contains only one unsteady term represented by the
indicial function

    Cma
(t) = Cma

(¥) - Fa (t) (39)
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Using simplified notation for the steady aerodynamic terms, the
aerodynamic equations in (38) will have the form

      

CZ (t) = CZa
a (t) +

l

V
CZq

q(t) + CZd
d (t)

Cm (t) = Cma
a (t) - Fa (t - t )

d
dt

a (t )dt
0

t

ò

               +
l

V
Cmq

q(t) + Cmd
d (t)

(40)

Specifically, for

    
Cma

(t) = a 1- e-b1t( ) + c

the pitching-moment coefficient takes the form

      

Cm (t) = Cma
a (t) - a e-b1(t-t) d

dt
a (t )dt

0

t

ò +
l

V
Cmq

q(t) + Cmd
d (t)

= ca (t) + ab1 e-b1ta (t - t )dt
0

t

ò +
l

V
Cmq

q(t) + Cmd
d (t)

(41)

where

  Cma
= a + c

Substituting (41) into (38) and introducing dimensional parameters, the
equations of motion can be written as

    

ȧ = Zaa + Zqq + Zdd

q̇ = Ca + B e-b1ta (t - t )dt
0

t

ò + Mqq + Mdd
(42)

where the parameters in these equations are defined in table I.
Introducing a new state variable

    
xa = e-b1ta (t - t )dt

0

t

ò

and the corresponding state equation for this  variable

    ̇xa = a - b1xa
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equations (42) can be expressed in state-space form as

    

ȧ

q̇
ẋa

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

Za Zq 0
C Mq B
1 0 -b1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

a

q
xa

é

ë

ê
ê
ê

ù

û

ú
ú
ú

+

Zd

Md

0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

d (43)

The characteristic polynomial of these equations has the form

    D = l3 + K2l2 + K1l + K0

where

  

K2 = - Za - Mq + b1

K1 = Za Mq - b1( ) - b1Mq - CZq

K0 = b1 Za Mq - ZqMa( )
(44)

The state equations of the system under consideration can also be
obtained by using the internal state variable defined by equation (20) as

    

ḣ = -
T1 + Ta

T1

æ

è
ç

ö

ø
÷

dh0
da

ȧ - T1
-1h

= kaȧ - T1
-1h

(20a)

When equation (20a) is combined with the equations of motion, the complete
set of state equations is

    

ȧ

q̇
ḣ

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

Za Zq 0
Ma Mq Mh

ka Za ka Zq -T1
-1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

a

q
h

é

ë

ê
ê
ê

ù

û

ú
ú
ú

+

Zd

Md

ka Zd

é

ë

ê
ê
ê

ù

û

ú
ú
ú

d (45)

where   Ma  and   Mh  are also explained in table I.  After formulating the

characteristic polynomial, it is found that its coefficients are equal to those
defined by equations (44) for

    
a =

T1 + Ta
T1

æ

è
ç

ö

ø
÷

dh0
da

Cmh

and

    b1 = T1
-1
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It can, therefore, be concluded that equation (43) and (45) represent the
same dynamical system.  As in the previous example, the system
description using either indicial functions or internal state variables can be
identical for specific forms of indicial functions and equations for internal
state variables.

The preceding development shows that the introduction of one
indicial function of the form specified by equation (39) into the aerodynamic
model equations results in the increase of the order of the characteristic
polynomial from two (no unsteady aerodynamics) to three.  Any further
addition of indicial functions into equation (42) means an additional
increase in the order of the characteristic polynomial by one.  From a
simple observation of equation (43) or (45), it is also evident that it is not
possible to estimate all the parameters in these equations from the
measurements of     a (t),     q(t), and     d (t) .  To assure parameter identifiability,

equation (43) would have to be transformed into a canonical form proposed
in reference 14.

In stability and control analysis where no unsteady aerodynamics is
considered, the pitching-moment coefficient is formulated as

      
Cm = Cma

a +
l

V
Cmȧ

ȧ + Cmq
q( ) + Cmd

d

It is expected, therefore, that the integral in equation (40)

    
I = Fa (t - t )

d
dt

a (t )dt
0

t

ò (46)

should be a counterpart of the term 
      

lȧ
V

æ
è

ö
ø
Cmȧ

.  The reduction of this

integral to the   ̇a -term can be demonstrated by approximating     a (t) by a
Fourier series

      a (t) = A0 + A1 - iB1( )eiwt + A2 - iB2( )ei2wt +K

which leads to

      ̇a (t) = iw A1 - iB1( )eiwt + i2w A2 - iB2( )ei2wt +K (47)



18

Substituting (47) into (46) results in

      

I = iw A1 - iB1( )eiwt Fa (t )e-iwtdt
0

t

ò

   + i2w A2 - iB2( )ei2wt Fa (t )e-i2wtdt
0

t

ò +K

(48)

The exponential functions in (48) can be further expanded in exponential
series

      

eiwt = 1+ iwt +
1
2

(iwt )2 +K

ei2wt = 1+ i2wt + 2(iwt )2 +K

M

In order to maintain the approximation of the integral to the first order in
frequency, it is sufficient to consider only the first terms in the exponential
series.  Then, all the integrals in (48) will be the same and equation (46) can
be simplified as

    
I = ȧ Fa (t )dt

0

t

ò (49)

As a result of this simplification, the counterpart of     Cmȧ
 is proportional to

the area of the deficiency function.  A similar conclusion is stated in
reference 4 for simple harmonic motion of an aircraft.

For a demonstration of aircraft longitudinal motion with and without
unsteady aerodynamic terms, equations (42) and their simplified version

    

ȧ = Zaa + Zqq + Zdd

q̇ = Maa + Mȧ ȧ + Mqq + Mdd
(50)

were used.  Aircraft characteristics and flight conditions are summarized

in table II.  The unsteady parameter   b1 was selected as 
    
b1 = 1 sec-1( ) which

corresponds to the nondimensional time constant     t1 = 51.3.  The parameter
a was evaluated from the relationship between the derivative     Cmȧ

and the

area of the deficiency function
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Cmȧ

= -
V
l

a e-b1tdt
0

¥

ò

as a = 0.05.  Because   Cma
= a + c  , the parameter c = -0.23.

In table III, the computed damping coefficients and frequencies of
motion from equations (42) and (50) are presented.  The values of these
parameters indicate that the replacement of the terms   Cma

a  and     Cmȧ
ȧ  by

the indicial function     Cma
(t) has a negligible effect on the damping

coefficient and only a small effect on the frequency.  Figure 2 shows the
computed time histories     a (t) and     q(t) for the given input     d (t) .  As could be

expected from the results in table III, the output variables for both cases
differ only slightly.  Small differences in     a (t) and     q(t) might indicate

possible problems when estimation of unsteady parameters from flight data
is attempted.

CONCLUDING REMARKS

A short theoretical study of aircraft aerodynamic model equations
with unsteady effects is presented.  First, the aerodynamic forces and
moments are expressed in terms of indicial functions.  This formulation
can be modified by including steady values of aerodynamic coefficients,
corresponding to instantaneous values of state and input variables, and the
so-called deficiency functions.  A deficiency function defines the difference
between the indicial function and its steady value.  When the concept of
indicial or deficiency functions is used, the resulting aircraft model is
represented by a set of integro-differential equations.  In the second
approach to the modeling of unsteady aerodynamics, the so-called internal
state variables were used.  These variables are additional states upon which
the aerodynamic coefficient depends.  Modeling based on internal state
variables preserves the state-space representation of the aircraft equations
of motion.

The formulation of unsteady aerodynamics is applied in two
examples.  In these examples, only linear aerodynamics are considered
thus limiting the application to aircraft small-amplitude motion around
trim conditions.  In order to further simplify the aerodynamic model
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equations, the indicial functions are postulated in a simple exponential
form and the internal state variables are governed by linear, time-
invariant, first-order differential equations.

In the first example, a one-degree-of-freedom harmonic motion about
one of the aircraft body axes is considered.  In the second example, a
longitudinal short-period motion is studied.  In both examples, it is shown
that the formulation using either indicial functions or internal state
variables leads to identical models.  Further, it is shown that the unsteady
terms in the models are the unsteady counterparts of the aerodynamic
acceleration derivatives.  From an observation of the developed longitudinal
equations of motion, it is evident that it will be impossible to estimate all
aerodynamic parameters from measured input/output data.  In addition, a
simple numerical example of the short-period motion of a fighter aircraft
indicates only small differences in the output time histories with the
unsteady effects being either included or ignored.  These small differences
might create further problems when estimation of unsteady parameters
from flight data is attempted.
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Table I. - Definition of parameters in equations (38) and (39).

    

Za =
rSV
2m

CZa
Ma =

rV2Sc
2 IY

Cma

Zq = 1+
rSc
4m

CZq
Mȧ =

rVSc
2

4 IY
Cmȧ

Zd =
rSV
2m

CZd
Mq =

rVSc
2

4 IY
Cmq

C =
rV2Sc

2 IY
c Mh =

rV2Sc
2 IY

Cmh

B =
rV2Sc

2 IY
ab1 Md =

rV2Sc
2 IY

Cmd

Table II. - Characteristics of an advanced fighter aircraft
 and flight conditions.

    

c = 3.51 m CZa
= -2.7

S = 37.16  m2 CZq
= -36.

m = 15000 kg CZd
= -0.83

IY = 170000 kg - m2 Cma
= -0.18

r = 0.56  kg / m3 Cmȧ
= -2.5

V = 90 m / sec Cmq
= -10.

Cmd
= -0.88
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Table III. - Damping coefficients and frequencies from simulations with
and without unsteady effects.

damping coefficient frequency

with unsteady effects 0.4859 0.6317
without unsteady

effects
0.4979 0.5953

0
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0.8

1

0 10 20 30 40 50

h

a, deg
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k=0.1346

k=0.0426

Figure 1. - Variation of internal state variable with angle of attack
in static and oscillatory tests.



24

-10

-5

0

5

10 Without Unsteady Terms
With Unsteady Terms

a,
deg

-12

-6

0

6

12

q,
deg/sec

-8

-4

0

4

8

0 10 20 30

d,
deg

t, sec

Figure 2. - Computed time histories with and without
unsteady aerodynamic terms.


